Finite Difference Time Domain (FDTD) Electromagnetic Modeling Efforts of the ComPASS SciDAC (and related SBIR) Projects

J.R. Cary, ^{1,2} K. Amyx, ¹ T. Austin, ¹ D. Bruhwiler, ¹

B. Cowan, P. Messmer, P. Mullowney, K. Paul,

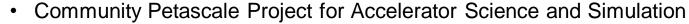
P. Stoltz, D. Smithe, S. Veitzer & G. Werner, G. Werner

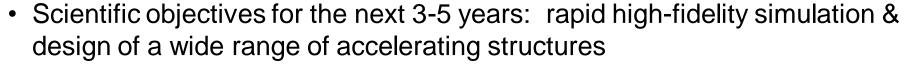
- 1. Tech-X Corp.
- 2. University of Colorado

Large Scale Computing and Storage Requirements for High Energy Physics (An HEP/ASCR/NERSC Workshop)

Rockville, MD, November 12, 2009

Supported by the US DOE Office of Science, Office of High Energy Physics, via the SBIR & SciDAC programs; and also by ASCR, Nuclear Physics & Basic Energy Sciences via the SBIR program; used NERSC supercomputing center.

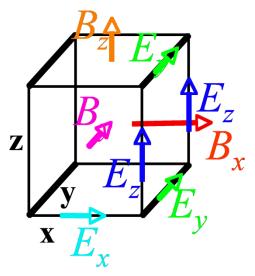


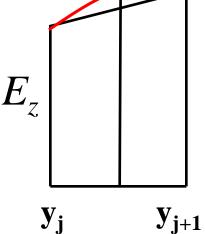


Supporting multiple NERSC projects:

Simulation of photonic crystal structures for laser driven particle acceleration

- Superconducting radio-frequency (SRF) accelerating cavities
 - calculation of frequencies, Q's, modes (fundamental & high-order); surface heating
 - multipacting move from analysis to designs that mitigate the problem
 - DOE/HEP applications include LHC, Project X, ILC
- Normal conducting (warm) RF cavities and waveguides
 - breakdown move from analysis to designs that mitigate the problem
 - simulate "magnetic insulation" of novel RF cavities for muon acceleration
 - DOE/HEP applications include muon collider, RF power transport, CLIC-like concepts
- Dielectric structures (advanced concepts)
 - high-gradient, laser-driven photonic band gap (PBG) accelerating cavities
 - novel, larger-scale RF structures with ultra-high Q, ultra-low wakefields
- Multi-physics capabilities are required, especially surface physics
 - coupling electromagnetics to surface heating & heat transport
 - electron-wall interactions

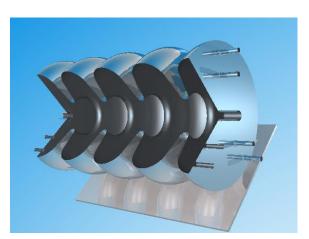


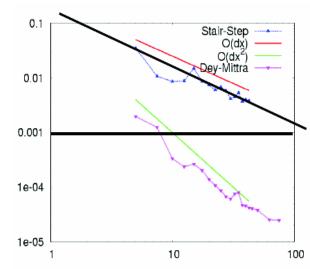


FDTD computations are based on the simple, fast Yee algorithm

- No matrix inversions
- Manifestly stable
 - Symmetric update matrix
- Works well with particles (PIC)
 - The choice of PIC codes
- Parallelizes well
 - Only boundary information exchanged between domains
- Higher-order versions exist


Curved structures accurately modeled with embedded boundaries




Stairstep was not accurate

Dey-Mittra found to give sufficient

accuracy

Improved algorithms are being developed

Broadly filtered diagonalization method:

IER

Journal of Computational Physics 227 (2008) 5200-5214

www.elsevier.com

Extracting degenerate modes and frequencies from time-domain simulations with filter-diagonalization ^q

Gregory R. Werner ^{a,*}, John R. Cary ^{a,b}

^a Center for Integrated Plasma Studies, University of Colorado, Boulder, CO 80309, United States
^b Tech-X Corporation, Boulder, CO 80303, United States

Received 22 May 2007; received in revised form 20 December 2007; accepted 27 January 2008 Available online 5 February 2008

Symmetric dielectric update algorithms:

Journal of Computational Physics 226 (2007) 1085-1101

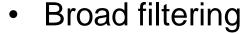
www.elsevier.c

A stable FDTD algorithm for non-diagonal, anisotropic dielectrics ^q

Gregory R. Werner a,*, John R. Cary a,b

^a Center for Integrated Plasma Studies, University of Colorado, Boulder, CO 80309, United States
^b Tech-X Corporation, Boulder, CO 80303, United States

Received 9 February 2007; received in revised form 4 May 2007; accepted 7 May 2007

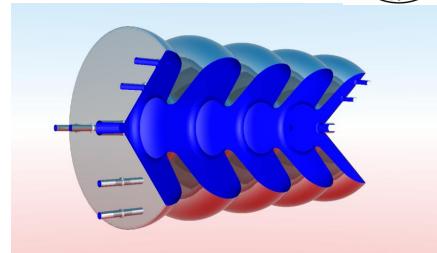


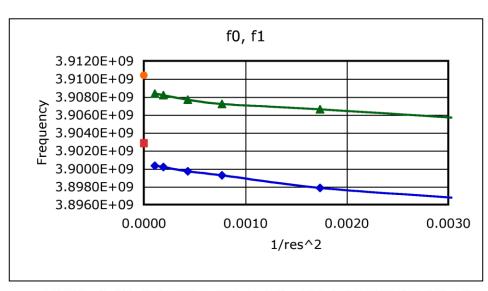

Broadly filtered diagonalization: time-domain codes become frequency domain

- Traditional method to obtain frequencies from time-domain codes:
 - Excite one mode with narrow band
 - Measure FFT peak or zero crossing
 - Cannot distinguish degeneracies

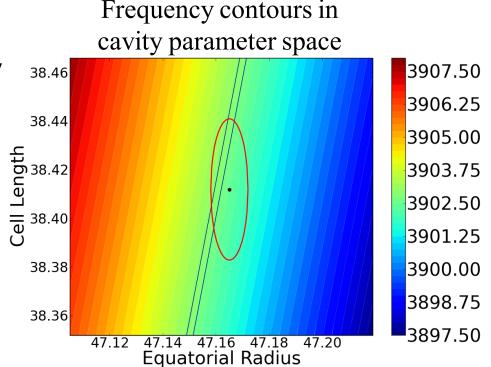
- Excite collection of modes in a frequency band
- Collect data on a subspace
- One application of operator gives small relative eigenvalue problem
- Singular value decomposition determines the linearly independent subspace
- Degeneracies found

Eliminates requirements for retention of multiple eigenvectors for eigenvalue solving




Validation with Experimental SRF Cavity Measurements have been Successful

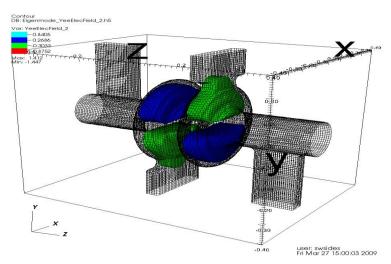
- Collaboration with Fermilab
- A15 cavity for Kaon separator
 - Previous computations:
 - gave frequencies low by 5 MHz out of 4 GHz.
 - VORPAL computations (improved algorithm, parallel):
 - low by 2 MHz
 - verified against exact solutions
- Many attempts to understand discrepancy:
 - Model no holes? one? all?
 - Correct for dielectric of air?



A15 cavity validation study with Fermilab identified error in previous measurements

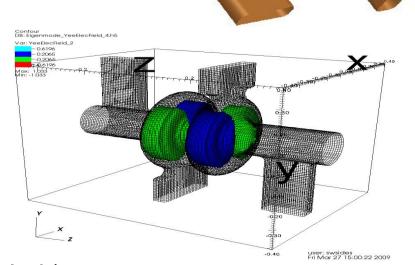
- Reduce the equator radius by 0.001 inch
- Get agreement
- Ask designers to measure their cavities
- CORDEX (+ calipers) show error in cavity dimensions
- Corrected model agrees well with computation.

Overlap of dimensional error ellipse with computational and experimental frequency uncertainty shows validation



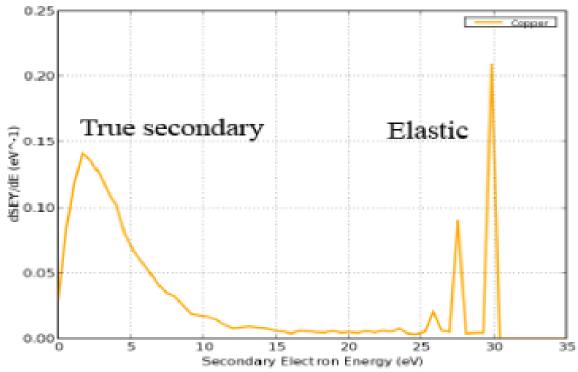
Multipactoring determines field limits in crab cavities

 LHC upgrade: introduce crab cavity to improve luminosity


 Jlab/Cockcroft splitting from waveguide replacement

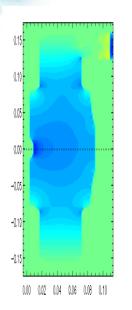
G. Burt, J. Smith (Cockcroft Institute)

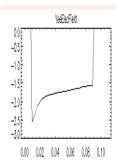
H. Wang, K. Tian, R. Rimmer (Jefferson Lab)

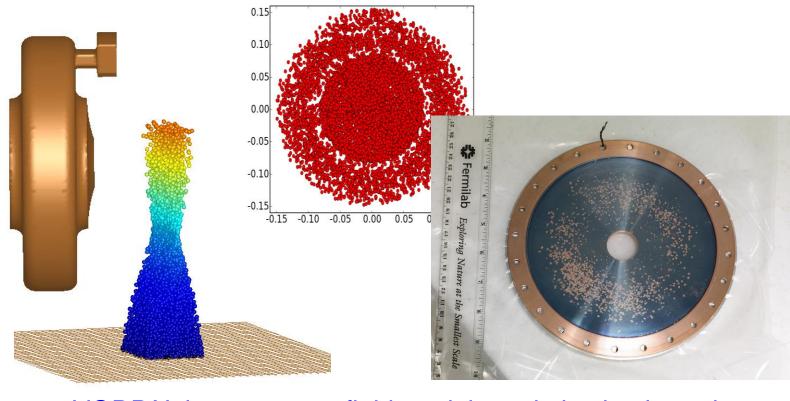


VORPAL's secondary electron emission models allow realistic multipacting studies

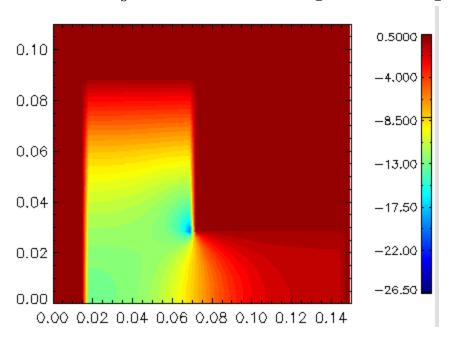
- Simple secondary emission one secondary emitted at normal incidence
- Phenomenological model true, diffuse and elastic secondaries
- M. A. Furman and M. Pivi, Phys. Rev. ST Accel. Beams 5, 124404 (2002)

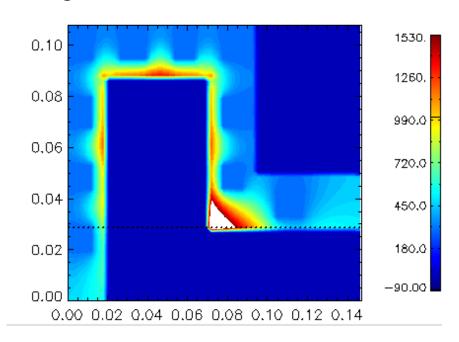






Multipacting analysis capability used to evaluate high-gradient muon collider cavities


- VORPAL has accurate field models and physics-based surface emission algorithms (right)
- Multipacting and breakdown often coincident. Simulation shows multipacting where experiment shows breakdown.



Developing new multi-physics capabilities: combined EM & heat flow

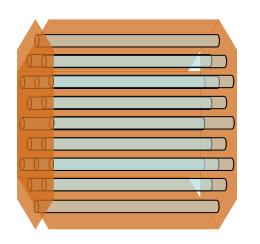
- Simplified RF photocathode 'electron gun', with 10 coolant channels.
- EM and thermal updates proceed simultaneously in VORPAL
- Ohmic wall losses are communicated between EM and Thermal.
- The thermal timescale is artificially reduced to match the EM time-scale.
- R_s , k, and C are temperature dependant, e.g., non-linear.

EM: E₇ Electric Field

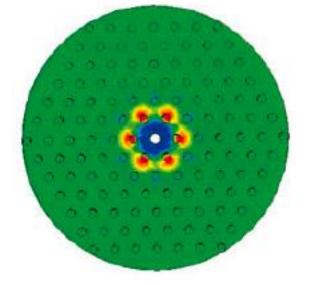
Thermal: Temperature

TECH-X CORPORATION

VORPAL is successfully modeling dielectric accelerating structures



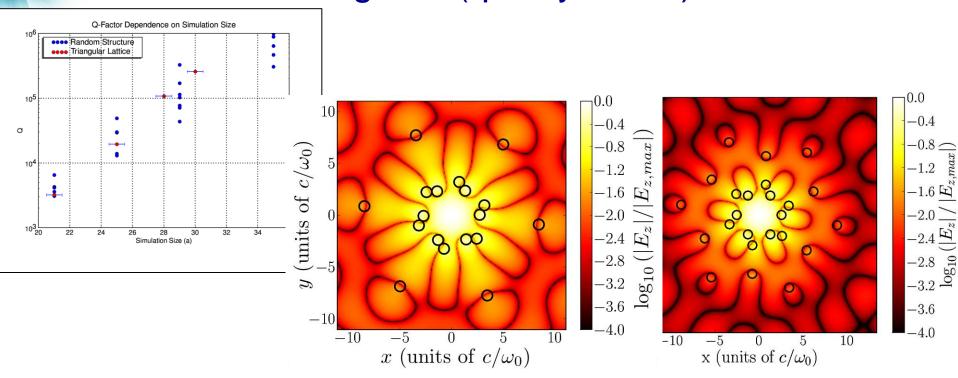
STUDY OF HYBRID PHOTONIC BAND GAP RESONATORS FOR PARTICLE ACCELERATORS


M. R. Masullo,¹ A. Andreone,² E. Di Gennaro,² S. Albanese,³ F. Francomacaro,³ M. Panniello,³ V. G. Vaccaro,³ and G. Lamura⁴

2486 MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 48, No. 12, December 2006

DOI 10.1002/mop

room temperature confirm the monomodal behavior, but the Q value is lower than expected (roughly 10^3). This is mainly due to


• 5 layers of (147) dielectric cylinders, yet $Q \sim 10^3$

Our optimizations found asymmetric systems with many fewer rods, yet larger Q (quality factor)

Final: Q ~ 11,000

Final: Q ~ 100,000

Computations showed that symmetry breaking critical

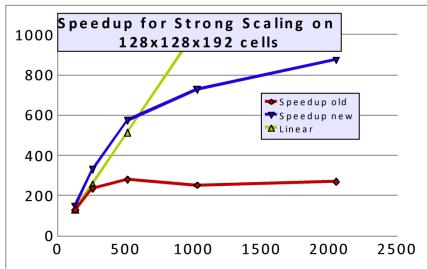
Current HPC Requirements

- LET YOUR LIGHT AND A SHINE LIG
- Architectures: ATLAS (LLNL), Franklin (NERSC),
 NY Blue (BNL), Intrepid (ALCF), Jaguar (ORLCF)
- Compute/memory load for typical production runs
 1-10 million cells; < 100,000 time steps
 > 2x10⁶ cells/s; ~ 1,000 cores; < 100 MB/core
 Efficient use of 16,000 cores shown; ~1,000 cells per core
- Data read/written
 3 to 9 doubles per cell → < GB files; ~50 dumps per run particle data is highly variable
- Necessary software, services or infrastructure parallel I/O support for HDF5
 3D viz (i.e. Visit server on Franklin)
- Current primary codes and their methods or algorithms
 VORPAL, Cartesian mesh, FDTD
- Known limitations/obstacles/bottlenecks
 I/O scaling

Broad usage at NERSC & LCFs

- VORPAL openly available to DOE collaborators at NERSC (Franklin), ALCF, ORLCF (Jaguar)
- Large number of users
 - 30 at NERSC under 5 different projects (repos)
 - 5-10 at ALCF under 2 different projects
- Large number of hours
 - NERSC: 6M hrs 2008, 2M by mid March for 2009
 - ALCF: 15M hrs 2008, 5M by mid March for 2009
- High concurrency (routine use at high processor counts)
 - NERSC, 2009: 8656 for average job
 - ALCF, 2009: 8192 cores typical
- Thanks to Katie Antypas of NERSC for data

HPC Usage & Methods; next 3-5 Years



- Upcoming changes to codes/methods/approaches
 implicit solvers; higher-order solvers (implicit and/or explicit);
 coupling solvers for multiphysics (heat in wall, EM in vacuum);
 improved on-the-fly data reduction to reduce/control I/O
 single-core performance improvements; SIMD, single-precision
 multiple grids; sophisticated static domain decomposition
- Changes to compute/memory load
 10x to 100x increase in mesh up to 10⁹ cells
 for higher-order, implicit increase in memory, not in mesh
- Changes to Data read/written
 always more space is desired; working to reduce/slow growth
- Changes to necessary software, services or infrastructure database support for parameter scans & design studies
- Anticipated limitations/obstacles/bottlenecks on 1000K PE system file I/O (e.g. rapid dump/restore); fault tolerance; easy/rapid viz
- Strategy for dealing with multi-core/many-core architectures actively porting to GPU

Developing: improved messaging for parallel performance enhancement

- Improved messaging: send only what is needed for FDTD
- Allows use of domains with only 3000 cells (before, 64000 cells)
- Consequences:
 - Time to solution increases by 20x if resources are available
 - Smaller problems can be addressed with high-performance computation

Break in strong scaling at 1000 procs or 3000 cell domains

 120M cells can take advantage of 40k procs

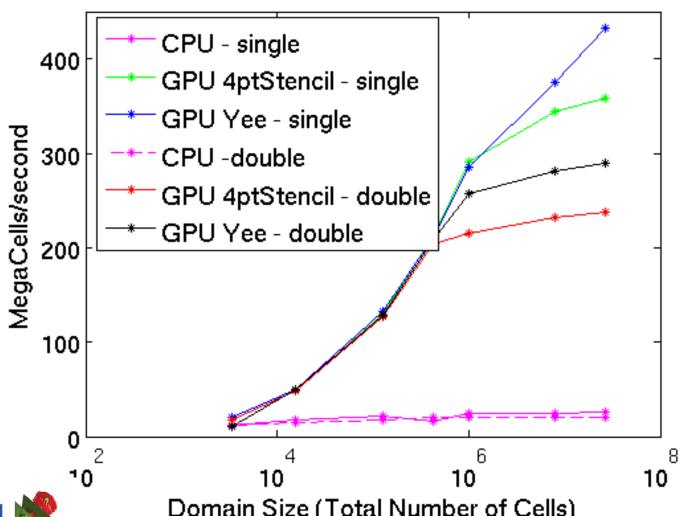
Peter Messmer¹, Ben Cowan¹, George Bell¹, Keegan Amyx¹, Boyana Norris², John R. Cary¹

1 Tech-X Corp., ² Argonne National Lab.

Work supported by DOE ASCR SBIR Phase II DE-FG02-07ER84731 and by VORPAL customers

Recent GPU Developments

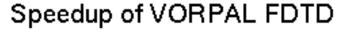
- VORPAL FDTD Simulations can be run across multiple GPUs. Speedup observed for large domains.
- Efficient data structures will improve messaging between CPU→GPU → better performance across multiple devices for smaller domains

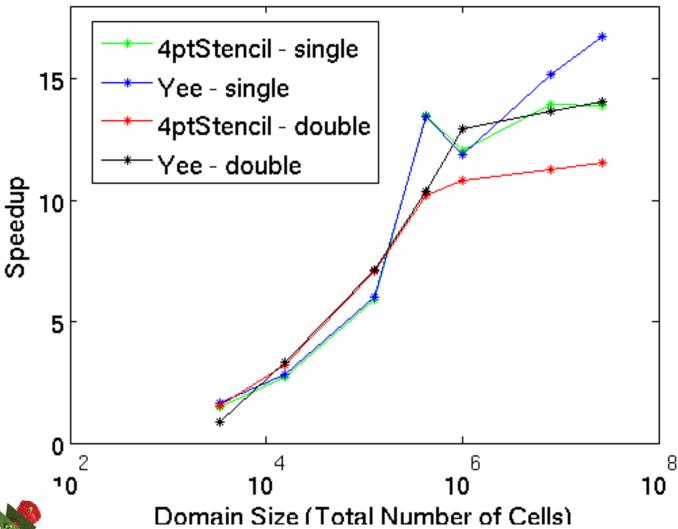

Future Work and Projections

- Dey-Mittra cut-cell algorithms will be implemented soon
 - → highly resolved and efficient RF cavity simulations on a GPU.
- Move particle push onto GPU.
- Multi-GPU machines will
 - greatly accelerate current simulations or
 - enable more highly resolved simulations with greater fidelity
- GPUs are an energy-efficient, cost-effective tool for rapid plasma and EM simulations.

Timings: FDTD Performance on a single GPU or CPU

MegaCells/second in VORPAL: CPU vs GPU





TECH-X CORPORATION

Speedup of GPU kernels: 1 GPU vs 1 CPU

TECH-X CORPORATION

Summary

- Recommendations on NERSC architecture, system configuration and associated service requirements needed for your science:
 - database support for parameter scans & design studies
 - support task-based parallelism, so that many large, parallel jobs can be executed (w/ optimizer?) for design of accelerators
 - primary viz support should target largest system (Hopper)
- What significant scientific progress could you achieve over the next 5 years with access to ~50X NERSC resources?
 - move from large, single run work flow to real design activities,
 including error analysis, to reduce cost & risk for future facilities
 - multi-physics EM modeling could yield smaller/cheaper accelerators:
 understand multipactoring → high-gradient SRF cavities
 understand RF breakdown → higher RF power availability
 - dielectric structure simulations could enable the development of fundamentally new accelerator hardware with much higher gradients